
Iterations
Last updated on 2024-05-23 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

For Loop with Python ListFor Loop with Python List

OVERVIEW

Questions

What do we mean by iterations and loops?

How are for-loops implemented?

Can conditional statements be used in iterations?

When to use while-loops?

Objectives

Understanding the concept of iterations and loops.

Learning the processes involved in for-loops implementation.

Building concept of using conditional statements in loops.

Understanding when to use while loop.

Basic Python

https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/05-iterations.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/05-iterations.Rmd
http://127.0.0.1:4323/05-iterations.pdf
http://127.0.0.1:4323/05-iterations.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=40mryCzIBwc

For Loop through Numpy arrayFor Loop through Numpy array

This chapter assumes that you are familiar with the following concepts in Python 3:

I/O Operations

Variables and Types

Mathematical Operation

Logical Operations

Indentation Rule

Conditional Statements

Arrays

Additionally, make sure that you are comfortable with the principles of indexing in arrays before you start this section. It is very
important that you have a good understanding of arrays and sequences, because the concept of iteration in programming deals
almost exclusively with these subjects.

You can practice everything in this section and the subsequent ones as you have been doing so far. However, if you find it
hard to grasp some of the concepts, don’t worry, you are not alone. It takes practice. To help you with that, Philip Guo from
UC San Diego (Calif., USA) has developed PythonTutor.com, an excellent online tool for learning Python. On that website,
write (or ‘copy and paste’) your code in the editor, then click Visualize Execution. In the new page, use the forward and back
buttons to see a step-by-step graphical visualisation of the processes that occur during the execution of your code. Try it on
the examples in this section.

PREREQUISITE

NOTE

https://www.youtube.com/watch?v=-Ex4JtqhWLw
http://127.0.0.1:4323/02-input_output.html#operations
http://127.0.0.1:4323/02-input_output.html#varTypes
http://127.0.0.1:4323/02-input_output.html#math_ops
http://127.0.0.1:4323/02-input_output.html#subsec:logicalOperatons
http://127.0.0.1:4323/03-conditional_statements.html#subsubsec:indentationRule
http://127.0.0.1:4323/03-conditional_statements.html
http://127.0.0.1:4323/04-arrays.html
http://127.0.0.1:4323/04-arrays.html#sec:list:indexing
http://www.pgbovine.net/
http://www.pythontutor.com/visualize.html#mode=edit

The concept

We employ iterations and loops in programming to perform repetitive operations. A repetitive operation is a reference to one or
several defined operations that are repeated multiple times.

For instance, suppose we have a list of 5 numbers as follows:

numbers = [-3, -2, 5, 0, 12]

Now we would like to multiply each number by 2. Based on what we have learned thus far, this is how we would approach this
problem:

Whilst this does the job, it is clearly very tedious and repetitive. In addition to that, if we have an array of several thousand
members, this approach becomes infeasible.

The process of multiplying individual members of our array with 2 is a very simple example of a repetitive operations.

In programming, there is a universally appreciated golden principle known as the DRY rule; and this is what it stand for:

Don’t Repeat Yourself

So if you find yourself doing something again and again, it is fair to assume that there might a better way of getting the
results you’re looking for …

Some programmers (with questionable motives) have come up with a WET rule too. Find out more about DRY and WET
from Wikipedia.

There are some universal tools for iterations that exist in all programming languages — e.g. for and while loops. Some other
tools such as vectorisation or generators, however, are unique to one or several specific programming languages.

numbers = [-3, -2, 5, 0, 12]

numbers[0] *= 2

numbers[1] *= 2

numbers[2] *= 2

numbers[3] *= 2

numbers[4] *= 2

print(numbers)

PYTHON

[-6, -4, 10, 0, 24]

OUTPUT

REMEMBER

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Throughout this section, we will discuss iterations via for and while loops, and review some real-world examples that may only
be addressed using iterative processes.

for-loops

Some of the data show that up to 80% of all conventional iterations are implemented as for loops. Whether or not it is the best
choice in of all these cases is a matter of opinion. What is important, however, is to learn the difference between the 2 methods and
feel comfortable with how they work.

Implementation of for loops in Python is simple compared to other programming languages. It essentially iterates through an
existing iterable variable — e.g. an array, and retrieves the values from it one by one, from the beginning right down to the end.

In Python, iterable is a term used in reference to variables that can be iterated through. Any variable type that can be used
in a for loop without any modifications is therefore considered an iterable.

Most arrays and sequences are iterable. See Table to find out which native types in Python are iterable. A rule of thumb is
that if an array or a sequence is numerically indexed (e.g. list, tuple, or str), it is an iterable.

Flowchart of a for–loop workflow applied to a list array.

Figure illustrates a flowchart to visualise the workflow of an iterative process using for loops in Python. The process depicted in
the flowchart may be described as follows:

REMEMBER

http://127.0.0.1:4323/02-input_output.html#fig:nativeTypes

An iterable is a Python variable that contains the built–in method .__iter__(). Methods starting and ending with two
underscores (dunderscores) are also known as magic methods in Python. See Python documentations for additional
information.

1. A for-loop is initialised using an array or a sequence and begins its process by going through the array values from the
first row.

2. Iterative Process: The value of the current row is retrieved and given the alias item, which now represents a variable in
the context of the loop.

3. Repetitive Operation(s): Designated operations are performed using the value of item:

item *= 2

4. Loop Condition: The for loop automatically checks whether or not it has reached the last row of the sequence:

NO: Move onto the next row and repeat the process from #2.

YES: Exit the loop.

We write this process in Python as:

ADVANCED TOPIC

PROCESS

numbers = [3, 5, 6.3, 9, 15, 3.4]

for item in numbers:

 item *= 2

 # Display the item to see the results:

 print(item)

PYTHON

6

10

12.6

18

30

6.8

OUTPUT

https://docs.python.org/3/tutorial/classes.html#iterators

where we can see that the result for each iteration is displayed in a new line. Example outlines other such applications and expands
on repetitive operations that may be simplified using for loops.

A for loop is always initialised as:

for variable_name in an_array:

 # An indented block of processes

 # we would like to perform on the

 # members of our array one by one.

where an_array is an iterable variable, and variable_name is the name of the variable we temporarily assign to a
member of an_array that corresponds with the current loop cycle (iteration). The number of loop cycles performed by a

for loop is equal to the length (number of members) of the array that we are iterating through, which in this case is called
an_array.

You can think of each iteration cycle as pulling out a row from table that is our array (as exemplified in section arrays) and
temporarily assigning its corresponding value to a variable until the next iteration cycle.

See subsection List Members to find the length of an array.

Given:

Write a for loop to display each item in peptides alongside its index and length. Display the results in the following
format:

Peptide XXXX at index X contains X amino acids.

REMEMBER

DO IT YOURSELF

peptides = [

 'GYSAR',

 'HILNEKRILQAID',

 'DNSYLY'

]

PYTHON

http://127.0.0.1:4323/04-arrays.html
http://127.0.0.1:4323/04-arrays.html#listMem

Solution

for sequence in peptides:

 length = len(sequence)

 index = peptides.index(sequence)

 print('Peptide', sequence, 'at index', index, 'contains', length, 'amino acids.')

PYTHON

Peptide GYSAR at index 0 contains 5 amino acids.

Peptide HILNEKRILQAID at index 1 contains 13 amino acids.

Peptide DNSYLY at index 2 contains 6 amino acids.

OUTPUT

When using a for loop, we can also reference other variables that have already been defined outside of the loop block:

It is also possible to define new variables inside the loop, but remember that the value of any variables defined inside a loop
is reset in each iteration cycle:

EXTENDED EXAMPLE OF ITERATIONS USING for LOOPS

numbers = [3, 5, 6.3, 9, 15, 3.4]

counter = 0

for item in numbers:

 item *= 2

 # Display the item to see the results:

 print('Iteration number', counter, ':', item)

 counter += 1

PYTHON

Iteration number 0 : 6

Iteration number 1 : 10

Iteration number 2 : 12.6

Iteration number 3 : 18

Iteration number 4 : 30

Iteration number 5 : 6.8

OUTPUT

numbers = [3, 5, 6.3, 9, 15, 3.4]

counter = 0

for item in numbers:

 new_value = item * 2

 # Display the item to see the results:

 print('Iteration number', counter, ':', item, '* 2 =', new_value)

 counter += 1

PYTHON

Write a for loop to display the values of a tuple defined as:

such that each protein is displayed on a new line and follows the phrase Protein Kinase X: as in

Protein Kinase 1: PKA

Protein Kinase 2: PKC

and so on.

Iteration number 0 : 3 * 2 = 6

Iteration number 1 : 5 * 2 = 10

Iteration number 2 : 6.3 * 2 = 12.6

Iteration number 3 : 9 * 2 = 18

Iteration number 4 : 15 * 2 = 30

Iteration number 5 : 3.4 * 2 = 6.8

OUTPUT

DO IT YOURSELF

protein_kinases = ('PKA', 'PKC', 'MPAK', 'GSK3', 'CK1')

PYTHON

Solution

Retaining the new values
It is nice to be able to manipulate and display the values of an array but in the majority of cases, we need to retain the new values
and use them later.

In such cases, we have two options:

Create a new array to store our values.
Replace the existing values with the new ones by overwriting them in the same array.

Creating a new array to store our values is very easy. All we need to do is to create a new list and add values to it in every
iteration. In other words, We start off by creating an empty list; to which we then add members using the .append() method
inside our for loop. The process of creating a new list and using the .append() method to values to an existing list are
discussed in subsections Useful Methods and mutability, respectively.

counter = 1

for protein in protein_kinases:

 print('Protein Kinase ', counter, ': ', protein, sep='')

 counter += 1

PYTHON

Protein Kinase 1: PKA

Protein Kinase 2: PKC

Protein Kinase 3: MPAK

Protein Kinase 4: GSK3

Protein Kinase 5: CK1

OUTPUT

numbers = [-4, 0, 0.3, 5]

new_numbers = list()

for value in numbers:

 squared = value ** 2

 new_numbers.append(squared)

print('numbers:', numbers)

PYTHON

numbers: [-4, 0, 0.3, 5]

OUTPUT

http://127.0.0.1:4323/04-arrays.html#subsubsec:list:usefulMethodsForList
http://127.0.0.1:4323/04-arrays.html#subsubsec:list:mutability

Given:

write a for loop in which you determine the length of each sequence in peptides, and then store the results as a list of
tuple items as follows:

[('SEQUENCE_1', X), ('SEQUENCE_2', X), ...]

Solution

The replacement method uses a slightly different approach. Essentially what we try to achieve is:

read the value of an item in an array;
manipulate the value via operations;
put the value back to the original array through item assignment and thereby replace the existing value.

print('new_numbers:', new_numbers)

PYTHON

new_numbers: [16, 0, 0.09, 25]

OUTPUT

DO IT YOURSELF

peptides = [

 'GYSAR',

 'HILNEKRILQAID',

 'DNSYLY'

]

PYTHON

peptides_with_length = list()

for sequence in peptides:

 length = len(sequence)

 item = (sequence, length)

 peptides_with_length.append(item)

PYTHON

We learned about modifying an existing value in a list in subsection mutability, where we discussed the concept of item
assignment. The process of replacing the original values of an array in a for loop is identical. The key to performing this process,
however, is that we need to have the correct index for the specific member of the array that we are trying to modify. Additionally,
don’t forget that item assignment is only possible in mutable arrays such as list. See Table to see which types of array are
mutable in Python.

To perform item assignment; we can implement a variable to represent the current iteration cycle in our for loop. We do so by
initialising the variable with a value of 0, and adding 1 to its value at the end of each cycle. We can then use that variable as an
index in each iteration cycle:

The enumerate() function actually returns a generator of tuple items each time it is called in the context of a for loop. A
generator is in principle very similar to a normal array; however, unlike an array, the values of a generator are not evaluated
by the computer until the exact time at which they are going to be used. This is an important technique in functional
programming known as lazy evaluation. It is primarily utilised to reduce the workload on the computer (both the processor
and the memory) by preventing the execution of processes that may be delayed for a later time. In the case of the
enumerate() function, the values are evaluated at the beginning of each iteration cycle in a for loop. Learn more about
lazy evaluation in Wikipedia or read more on generators in Python in the official documentations.

This is a perfectly valid approach and it is used in many programming languages. However, Python makes this process even easier
by introducing the function enumerate() . We often use this function at the initiation of a for loop. The function takes an array as
an input and as the name suggests, enumerates them; thereby simplifying the indexing process. The previous example may
therefore be written more concisely in Python as follows:

numbers = [-4, 0, 0.5, 5]

Variable representing the

index (iteration cycle):

index = 0

for value in numbers:

 new_value = value ** 5

 # Putting it back into

 # the original array:

 numbers[index] = new_value

 # Adding one to the index for

 # the next iteration cycle:

 index += 1

print(numbers)

PYTHON

[-1024, 0, 0.03125, 3125]

OUTPUT

ADVANCED TOPIC

http://127.0.0.1:4323/04-arrays.html#subsubsec:list:mutability
http://127.0.0.1:4323/02-input_output.html#fig:nativeTypes
https://en.wikipedia.org/wiki/Lazy_evaluation
https://docs.python.org/3/howto/functional.html#generators

Given:

Display each item in characters as many times in one line as the index of that item in characters. The results should appear
as follows:

2

33

444

numbers = [-4, 0, 0.5, 5]

for index, value in enumerate(numbers):

 # Manipulating the value:

 new_value = value ** 5

 numbers[index] = new_value

print(numbers)

PYTHON

[-1024, 0, 0.03125, 3125]

OUTPUT

DO IT YOURSELF

characters = ['1', '2', '3', '4']

PYTHON

Solution

for-loop and conditional statements
We can use conditional statements within for loops to account for and handle different situations.

Suppose we want to find the smallest value (the minimum) within a list of numbers using a for loop. The workflow of this process
is displayed as a flowchart diagram in figure below.

Given an array, we can break down the problem as follows:

for index, item in enumerate(characters):

 print(item * index)

PYTHON

2

33

444

OUTPUT

Finally, we can implement the process displayed in figure as follows:

numbers = [7, 16, 0.3, 0, 15, -4, 5, 3, 15]

minimum = numbers[0]

for value in numbers:

 if value < minimum:

 minimum = value

print('The minimum value is:', minimum)

PYTHON

The minimum value is: -4

OUTPUT

Given:

Using a for loop and a conditional statement, find and display the sequences in peptides that contain the amino acid serine
(S) in the following format:

Found S in XXXXX.

Solution

Sequence of numbers in for-loops
To produce a sequence of int numbers to use in a for loop, we can use the built-in range() function. The function takes in 3
positional arguments representing start, stop, and step. Note that range() is only capable of producing a sequence of integer
numbers.

DO IT YOURSELF

peptides = [

 'FAEKE',

 'CDYSK',

 'ATAMGNAPAKKDT',

 'YSFQW',

 'KRFGNLR',

 'EKKVEAPF',

 'GMGSFGRVML',

 'YSFQMGSFGRW',

 'YSFQMGSFGRW'

]

PYTHON

target = 'S'

for sequence in peptides:

 if target in sequence:

 print('Found', target, 'in', sequence)

PYTHON

Found S in CDYSK

Found S in YSFQW

Found S in GMGSFGRVML

Found S in YSFQMGSFGRW

Found S in YSFQMGSFGRW

OUTPUT

The range() function does not create the sequence of numbers immediately. Rather, it behaves in a similar way as the

enumerate() function does (as a generator).

Displaying the output of a range() function is not, as one might expect, an array of numbers:

It is, however, possible to evaluate the values outside of a for loop. To do so, we need to convert the output of the function to list
or a tuple:

The range() function is non-inclusive. That is, it creates a sequence that starts from and includes the value given as the
start argument, up to but excluding the the value of the end argument. For instance, range(1, 5, 1) creates a sequence
starting from 1, which is then incremented 1 step at a time right up to 5, resulting in a sequence that includes the following
numbers: 1, 2, 3, 4

REMEMBER

range_generator = range(0, 10, 2)

print(range_generator)

PYTHON

range(0, 10, 2)

OUTPUT

range_sequence = list(range_generator)

print(range_sequence)

PYTHON

[0, 2, 4, 6, 8]

OUTPUT

REMEMBER

EXAMPLE: SEQUENCE COMPARISON. DOT PLOTS AND for-LOOPS

while-loops

In the previous, we explored for-loop mediated iterations and learned that they are exclusively applied to iterable objects —
e.g. arrays and sequences. This is because, as demonstrated in workflow figure, at the end of each iteration, the implicit termination
condition that is inherent in the process tests whether or not it has reached the end of the sequence it is iterating through.

It may, however, be deemed necessary to apply iterative processes based on conditions other than that embedded in the for-loop.
In such cases, we use a different class of iterations known as the while-loop.

Consider the following scenario:

We want to ask the user to enter a sequence of exactly 5 amino acids in single letter code. If the
provided sequence is more or less than 5 letters long, we would like to display a message and ask
them to try again; otherwise, we will display the process and terminate the programme.

It is impossible to write such a process using a for-loop. This is because when we initialise the iteration process, the number of
loops we need is unknown. In other words, we simply do not know how many times the user would need enter said sequence before
they get it right.

To simplify the understanding of the concept, we can visualise the process in flowchart, as displayed in figure. In the flowchart, you
can see that the only way to exit the loop is to enter a sequence of exactly 5 characters. Doing anything else — i.e. entering a
different number of letters – is tantamount to going back to be beginning of the loop. The process may be described verbally as
follows:

1. Initialise the variable sequence and assign an empty string to it.

2. While the length of sequence is not equal to 5:

Ask the use to enter a new sequence.
Go back to #2.

3. Display the value of sequence.

Implementation
We start while-loop using the while syntax, immediately followed by the loop condition.

We can now implement the process displayed in figure as follows:

sequence = str()

while len(sequence) != 5:

 sequence = input('Enter a sequence of exactly 5 amino acids: ')

print(sequence)

When executed, the above code will prompt the user to enter a value:

Enter a sequence of exactly 5 amino acids: GCGLLY

Enter a sequence of exactly 5 amino acids: GCGL

Enter a sequence of exactly 5 amino acids: GC

Enter a sequence of exactly 5 amino acids: GCGLL

GCGLL

As expected, the user is repetitively asked to enter a 5 character sequence until they supply the correct number of letters.

1. Write a script which asks the user to enter a number, then:

if the second power of the number is smaller than 10, repeat the process and ask again;

if the second power of the number is equal or greater than 10, display the original value and terminate the
programme.

Hint: Don’t forget to convert the value enter by the user to an appropriate numeric type before you perform any
mathematical operations.

2. We learned in subsection Sequence of Numbers that the built-in function range() may be utilised to produce a
sequence of integer numbers. The function takes 3 input arguments in the following order: stop, start, step.

We now need a sequence of floating point numbers with the following criteria:

stop = 10

start = 0

step = 0.5

The use of a floating point number as step means that we cannot use range() to create the desired sequence. Write a
script in which you use a while-loop to produce a sequence of floating point numbers with the above criteria and display
the result.

The resulting sequence must be:

presented as an instance of type list;

similar to range() , the sequence must be non-inclusive — i.e. it must include the value of start, but not that of stop.

Solution

value = 0

while value ** 2 < 10:

 response = input('Enter a number: ')

 value = float(response)

print(value)

DO IT YOURSELF

Solution

Solution

Breaking a while-loop
Unlike for-loops, it is common to break out of a while-loop mid-process. This is also known as premature termination.

To consider a situation that may necessitate such an approach, we shall modify our scenario as follows:

stop = 10

start = 0

step = 0.5

number = start

sequence = list()

while number < stop:

 sequence.append(number)

 number += step

print(sequence)

PYTHON

[0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]

OUTPUT

A smarter solution, however, would be:

stop = 10

start = 0

step = 0.5

sequence = [start]

while sequence[-1] < stop - step:

 sequence.append(sequence[-1] + step)

print(sequence)

PYTHON

[0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]

OUTPUT

We want to ask the user to enter a sequence of exactly 5 amino acids. If the sequence the user
provides is more or less than 5 letters long, we would like to display a message and ask them to try
again; otherwise, we will display the sequence and terminate the programme. Additionally, the
loop should be terminated: - upon 3 failed attempts; or, - if the user entered the word exit instead
of a 5 character sequence.

In the former case, however, we would also like to display a message and inform the user that we are terminating the programme
because of 3 failed attempts.

To implement the first addition to our code, we will have to make the following alterations in our code:

Define a variable to hold the iteration cycle, then test its value at the beginning of each cycle to make sure that it is below the
designated threshold. Otherwise, we manually terminate the loop using the break syntax.

Create a conjunctive conditional statement for the while-loop to make so that it is also sensitive to our exit keyword.

sequence = str()

counter = 1

max_counter = 3

exit_keyword = 'exit'

while len(sequence) != 5 and sequence != exit_keyword:

 if counter == max_counter:

 sequence = "Three failed attempt - I'm done."

 break

 sequence = input('Enter a sequence of exactly 5 amino acids or [exit]: ')

 counter += 1

print(sequence)

Exercises

1. Can you explain the reason why in the example given in subsection for-loop and conditional statements we set
minimum to be equal to the first value of our array instead of, for instance zero or some other number?

Store your answer in a variable and display it using print() .

2. Write a script that using a for loop, calculates the sum of all numbers in an array defined as follows:

numbers = [0, -2.1, 1.5, 3]

and display the result as:

Sum of the numbers in the array is 2.4

3. Given an array of integer values as:

numbers = [2, 1, 3]

write a script that using for loops, displays each number in the list as many time as the number itself. The programme
must therefore display 2 twice, 1 once, and 3 three times.

4. Given a list of numbers defined as:

numbers = [7, 16, 0.3, 0, 15, -4, 5, 3, 15]

write a script that using at most two for loops, finds the variance of the numbers, and display the mean, and the variance.
Note that you will need to calculate the mean as a part of your calculations to find the variance.

The equation for calculating the variance is:

Hint: Breaking down the problem into smaller pieces will simplify the process of translating it into code and thereby solving
it:

a. Work out the Mean or (the simple average of the numbers):

b. Calculate the sum of: each number () subtracted by the Mean () and square the result.

c. Divide the resulting number by the length of number.

Display the results in the following format:

END OF CHAPTER EXERCISES

=σ2
(− μ∑n

i=1 xi)2

n

μ

μ =
∑n

i=1 xi

n

xi μ

Mean: XXXX

Variance: XXXX

Solution

Q1

Q2

Q3

answer = "Because the minimum of the array may be smaller than zero."

print(answer)

PYTHON

Because the minimum of the array may be smaller than zero.

OUTPUT

numbers = [0, -2.1, 1.5, 3]

numbers_sum = 0

for value in numbers:

 numbers_sum += value

print("Sum of the numbers in the array is", numbers_sum)

PYTHON

Sum of the numbers in the array is 2.4

OUTPUT

numbers = [2, 1, 3]

for value in numbers:

 prepped_value = [value] * value

 for number in prepped_value:

 print(number)

PYTHON

2

2

1

3

3

3

OUTPUT

Q4

numbers = [7, 16, 0.3, 0, 15, -4, 5, 3, 15]

numbers_length = len(numbers)

Calculating the "sum"

numbers_sum = 0

for value in numbers:

 numbers_sum += value

Calculating the "mean"

numbers_mean = numbers_sum / numbers_length

Calculating the "variance"

variance_denominator = numbers_length

variance_numerator = 0

for value in numbers:

 prepped_value = (value - numbers_mean) ** 2

 variance_numerator += prepped_value

numbers_variance = variance_numerator / variance_denominator

Results

print("Mean:", numbers_mean)

print("Variance:", numbers_variance)

PYTHON

Mean: 6.366666666666666

Variance: 48.919999999999995

OUTPUT

Iterations and loops are used to perform repetitive operations.

Implementation of for-loop involves 4 steps.

Conditional statements are used within loops to handle different situations.

while-loop is suited when exact number of conditions/iterations are unknown.

KEY POINTS

