
Dictionaries
Last updated on 2024-05-23 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

This chapter assumes that you are familiar with the following concepts in Python 3:

Indentation Rule

Conditional Statements

Arrays

Loops and Iterations

Dictionary
Mapping Types – dict

OVERVIEW

Questions

How is a dictionary de�ned in Python?

What are the ways to interact with a dictionary?

Can a dictionary be nested?

Objectives

Understanding the structure of a dictionary.

Accessing data from a dictionary.

Practising nested dictionaries to deal with complex data.

PREREQUISITE

Basic Python

https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/06-dictionaries.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/06-dictionaries.Rmd
http://127.0.0.1:7333/06-dictionaries.pdf
http://127.0.0.1:7333/06-dictionaries.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
http://127.0.0.1:7333/03-conditional_statements.html#subsubsec:indentationRule
http://127.0.0.1:7333/03-conditional_statements.html
http://127.0.0.1:7333/04-arrays.html
http://127.0.0.1:7333/05-iterations.html
https://docs.python.org/3.6/library/stdtypes.html#mapping-types-dict

Google search

StackOverflow python-3.x dictionaries

YouTube Tutorial Dictionaries

One of the most useful built-in tools in Python, dictionaries associate a set of values with a number of keys.

Think of an old fashion, paperback dictionary where we have a range of words with their de�nitions. The words are the keys, and the
de�nitions are the values that are associated with the keys. A Python dictionary works in the same way.

Consider the following scenario:

Suppose we have a number of protein kinases, and we would like to associate them with their
descriptions for future reference.

This is an example of association in arrays. We may visualise this problem as displayed in Figure.

One way to associate the proteins with their de�nitions would be to use nested arrays. However, it would make it dif�cult to retrieve the
values at a later time. This is because to retrieve the values, we would need to know the index at which a given protein is stored.

Instead of using normal arrays, in such circumstances, we use associative arrays. The most popular method to create construct an
associative array in Python is to create dictionaries or dict.

To implement a dict in Python, we place our entries in curly bracket, separated using a comma. We separate keys and values
using a colon — e.g. {‘key’: ‘value’}. The combination of dictionary key and its associating value is known as a dictionary item.

When constructing a long dict with several items that span over several lines, it is not necessary to write one item per line or use
indentations for each item or line. All we must is to write the as {‘key’: ‘value’} in curly brackets and separate each pair with a
comma. However, it is good practice to write one item per line and use indentations as it makes it considerably easier to read the
code and understand the hierarchy.

We can therefore implement the diagram displayed in Figure in Python as follows:

REMEMBER

NOTE

https://www.google.co.uk/search?q=Dictionaries%20in%20Python%203
https://stackoverflow.com/search?q=python-3.x%20dictionaries&s=78ef2a31-bb79-485b-914d-02db1ab8e9ca
https://www.youtube.com/results?search_query=Python+3+Programming+Tutorial+-+Dictionaries

Use Universal Protein Resource (UniProt) to �nd the following proteins for humans: - Axin-1 - Rhodopsin

Construct a dictionary for these proteins and the number amino acids for each of them. The keys should represent the name of the
protein. Display the result.

Solution

Now that we have created a dictionary; we can test whether or not a speci�c key exists our dictionary:

protein_kinases = {

 'PKA': 'Involved in regulation of glycogen, sugar, and lipid metabolism.',

 'PKC': 'Regulates signal transduction pathways such as the Wnt pathway.',

 'CK1': 'Controls the function of other proteins through phosphorylation.'

 }

print(protein_kinases)

PYTHON

{'PKA': 'Involved in regulation of glycogen, sugar, and lipid metabolism.', 'PKC': 'Regulates signal transdu

OUTPUT

print(type(protein_kinases))

PYTHON

<class 'dict'>

OUTPUT

DO IT YOURSELF

proteins = {

 'Axin-1': 862,

 'Rhodopsin': 348

 }

print(proteins)

PYTHON

{'Axin-1': 862, 'Rhodopsin': 348}

OUTPUT

https://uniprot.org/

Using the dictionary you created in Do it Yourself, test to see whether or not a protein called ERK exists as a key in your dictionary?
Display the result as a Boolean value.

Solution

Interacting with a dictionary
We have already learnt that in programming, the more explicit our code, the better it is. Interacting with dictionaries in Python is very easy,
coherent, and explicit. This makes them a powerful tool that we can exploit for different purposes.

In arrays, speci�cally in list and tuple, we routinely use indexing techniques to retrieve values. In dictionaries, however, we use keys to
do that. Because we can de�ne the keys of a dictionary ourselves, we no longer have to rely exclusively on numeric indices.

As a result, we can retrieve the values of a dictionary using their respective keys as follows:

'CK1' in protein_kinases

PYTHON

True

OUTPUT

'GSK3' in protein_kinases

PYTHON

False

OUTPUT

DO IT YOURSELF

print('ERK' in proteins)

PYTHON

False

OUTPUT

print(protein_kinases['CK1'])

PYTHON

However, if we attempt to retrieve the value for a key that does not exist in our dict, a KeyError will be raised:

Implement a dict to represent the following set of information:

Cystic Fibrosis:

Full Name Gene Type

Cystic �brosis transmembrane conductance regulator CFTR Membrane
Protein

Using the dictionary you implemented, retrieve and display the gene associated with cystic �brosis.

Controls the function of other proteins through phosphorylation.

OUTPUT

'GSK3' in protein_kinases

PYTHON

False

OUTPUT

print(protein_kinases['GSK3'])

PYTHON

KeyError: 'GSK3'

OUTPUT

DO IT YOURSELF

Solution

Whilst the values in a dict can be of virtually any type supported in Python, the keys may only be de�ned using immutable types.

To �nd out which types are immutable, see Table. Additionally, the keys in a dictionary must be unique.

If we attempt to construct a dict using a mutable value as key, a TypeError will be raised.

For instance, list is a mutable type and therefore cannot be used as a key:

But we can use any immutable type as a key:

cystic_fibrosis = {

 'full name': 'Cystic fibrosis transmembrane conductance regulator',

 'gene': 'CFTR',

 'type': 'Membrane Protein'

 }

print(cystic_fibrosis['gene'])

PYTHON

CFTR

OUTPUT

REMEMBER

test_dict = {

 ['a', 'b']: 'some value'

 }

PYTHON

TypeError: unhashable type: 'list'

OUTPUT

test_dict = {

 'ab': 'some value'

 }

print(test_dict)

PYTHON

http://127.0.0.1:7333/02-input_output.html#fig:nativeTypes

If we de�ne a key more than once, the Python interpreter constructs the entry in dict using the last instance.

In the following example, we repeat the key ‘pathway’ twice; and as expected, the interpreter only uses the last instance, which in this case
represents the value ‘Canonical’:

Mutability
Dictionaries are mutable. This means that we can alter their contents. We can make any alterations to a dictionary as long as we use
immutable values for the keys.

Suppose we have a dictionary stored in a variable called protein, holding some information about a speci�c protein:

We can add new items to our dictionary or alter the existing ones:

{'ab': 'some value'}

OUTPUT

test_dict = {

 ('a', 'b'): 'some value'

 }

print(test_dict)

PYTHON

{('a', 'b'): 'some value'}

OUTPUT

signal = {

 'name': 'Wnt',

 'pathway': 'Non-Canonical', # first instance

 'pathway': 'Canonical' # second instance

 }

print(signal)

PYTHON

{'name': 'Wnt', 'pathway': 'Canonical'}

OUTPUT

protein = {

 'full name': 'Cystic fibrosis transmembrane conductance regulator',

 'alias': 'CFTR',

 'gene': 'CFTR',

 'type': 'Membrane Protein',

 'common mutations': ['Delta-F508', 'G542X', 'G551D', 'N1303K']

 }

PYTHON

We can also alter an existing value in a dictionary using its key. To do so, we simply access the value using its key, and treat it as a normal
variable; i.e. the same way we do with members of a list:

Adding a new item:

protein['chromosome'] = 7

print(protein)

print(protein['chromosome'])

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type

7

OUTPUT

print(protein['common mutations'])

PYTHON

['Delta-F508', 'G542X', 'G551D', 'N1303K']

OUTPUT

protein['common mutations'].append('W1282X')

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type

OUTPUT

Implement the following dictionary:

signal = {'name': 'Wnt', 'pathway': 'Non-Canonical'}}

with respect to signal:

Correct the value of pathway to “Canonical”;

Add a new item to the dictionary to represent the receptors for the canonical pathway as “Frizzled” and “LRP”.

Display the altered dictionary as the �nal result.

Solution

Displaying an entire dictionary using the print() function can look a little messy because it is not properly structured. There is,
however, an external library called pprint (Pretty-Print) that behaves in very similar way to the default print() function, but
structures dictionaries and other arrays in a more presentable way before displaying them. We do not discuss ``Pretty-Print’’ in
this course, but it is a part of Python’s default library and is therefore installed with Python automatically. To learn more it, have a
read through the of�cial documentations for the library and review the examples.

Because the keys are immutable, they cannot be altered. However, we can get around this limitation by introducing a new key and
assigning the values of the old key to the new one. Once we do that, we can go ahead and remove the old item. The easiest way to remove
an item from a dictionary is to use the syntax del :

DO IT YOURSELF

signal = {'name': 'Wnt', 'pathway': 'Non-Canonical'}

signal['pathway'] = 'Canonical'

signal['receptors'] = ('Frizzled', 'LRP')

print(signal)

PYTHON

{'name': 'Wnt', 'pathway': 'Canonical', 'receptors': ('Frizzled', 'LRP')}

OUTPUT

ADVANCED TOPIC

https://docs.python.org/3/library/pprint.html#module-pprint
https://docs.python.org/3/library/pprint.html#example

We can simplify the above operation using the .pop() method, which removes the speci�ed key from a dictionary and returns any values
associated with it:

Creating a new key and assigning to it the

values of the old key:

protein['human chromosome'] = protein['chromosome']

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type

OUTPUT

Now we remove the old item from the dictionary:

del protein['chromosome']

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type

OUTPUT

protein['common mutations in caucasians'] = protein.pop('common mutations')

print(protein)

PYTHON

{'full name': 'Cystic fibrosis transmembrane conductance regulator', 'alias': 'CFTR', 'gene': 'CFTR', 'type

OUTPUT

Implement a dictionary as:

with respect to signal:

Change the key name from ‘pdb’ to ‘pdb id’ using the .pop() method.

Write a code to �nd out whether the dictionary:

contains the new key (i.e. ‘pdb id’).

con�rm that it no longer contains the old key (i.e. ‘pdb’)

If both conditions are met, display:

Contains the new key, but not the old one.

Otherwise:

Failed to alter the dictionary.

Solution

DO IT YOURSELF

signal = {'name': 'Beta-Galactosidase', 'pdb': '4V40'}

PYTHON

signal = {

 'name': 'Beta-Galactosidase',

 'pdb': '4V40'

}

signal['pdb id'] = signal.pop('pdb')

if 'pdb id' in signal and 'pdb' not in signal:

 print('Contains the new key, but not the old one.')

else:

 print('Failed to alter the dictionary.')

PYTHON

Contains the new key, but not the old one.

OUTPUT

Nested dictionaries
As explained earlier the section, dictionaries are amongst the most powerful built-in tools in Python. It is possible to construct nested
dictionaries to organise data in a hierarchical fashion. This useful technique is outlined extensively in example.

It is very easy to implement nested dictionaries:

and we follow similar principles to access, alter, or remove the values stored in nested dictionaries:

Parent dictionary

pkc_family = {

 # Child dictionary A:

 'conventional': {

 'note': 'Require DAG, Ca2+, and phospholipid for activation.',

 'types': ['alpha', 'beta-1', 'beta-2', 'gamma']

 },

 # Child dictionary B:

 'atypical': {

 'note': (

 'Require neither Ca2+ nor DAG for'

 'activation (require phosphatidyl serine).'

),

 'types': ['iota', 'zeta']

 }

}

PYTHON

print(pkc_family)

PYTHON

{'conventional': {'note': 'Require DAG, Ca2+, and phospholipid for activation.', 'types': ['alpha', 'beta-1

OUTPUT

print(pkc_family['atypical'])

PYTHON

{'note': 'Require neither Ca2+ nor DAG foractivation (require phosphatidyl serine).', 'types': ['iota', 'zet

OUTPUT

print(pkc_family['conventional']['note'])

PYTHON

Require DAG, Ca2+, and phospholipid for activation.

OUTPUT

Implement the following table of genetic disorders as a nested dictionary:

Full Name Gene Type

Cystic fibrosis Cystic �brosis
transmembrane

conductance
regulator

CFTR Membrane
Protein

Xeroderma pigmentosum A DNA repair
protein

complementing
XP-A cells

XPA Nucleotide
excision
repair

Haemophilia A Haemophilia A F8 Factor VIII
Blood-
clotting
protein

Using the dictionary, display the gene for Haemophilia A.

print(pkc_family['conventional']['types'])

PYTHON

['alpha', 'beta-1', 'beta-2', 'gamma']

OUTPUT

print(pkc_family['conventional']['types'][2])

PYTHON

beta-2

OUTPUT

apkc_types = pkc_family['conventional']['types']

print(apkc_types[1])

PYTHON

beta-1

OUTPUT

DO IT YOURSELF

Solution

genetic_diseases = {

 'Cystic fibrosis': {

 'name': 'Cystic fibrosis transmembrane conductance regulator',

 'gene': 'CFTR',

 'type': 'Membrane Protein'

 },

 'Xeroderma pigmentosum A': {

 'name': 'DNA repair protein complementing XP-A cells',

 'gene': 'XPA',

 'type': 'Nucleotide excision repair'

 },

 'Haemophilia A': {

 'name': 'Haemophilia A',

 'gene': 'F8',

 'type': 'Factor VIII Blood-clotting protein'

 }

}

print(genetic_diseases['Haemophilia A']['gene'])

PYTHON

F8

OUTPUT

We would like to store and analyse the structure of several proteins involved in the Lac operon. To do so, we create a Python dict
to help us organise our data.

We start off by creating an empty dictionary that will store our structures:

We then move onto depositing our individual entries to structure by adding new items to it.

Each item has a key that represents the name of the protein we are depositing, and a value that is itself a dictionary consisting of
information regarding the structure of that protein:

Dictionaries don’t have to be homogeneous. In other words, there can be different items in each entry.

For instance, the ‘LacY’ protein contains an additional key entitled ‘note’:

EXAMPLE: NESTED DICTIONARIES IN PRACTICE

structures = dict()

PYTHON

structures['Beta-Galactosidase'] = {

 'pdb id': '4V40',

 'deposit date': '1994-07-18',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.5,

 'authors': (

 'Jacobson, R.H.', 'Zhang, X.',

 'Dubose, R.F.', 'Matthews, B.W.'

)

}

PYTHON

structures['Lactose Permease'] = {

 'pdb id': '1PV6',

 'deposit data': '2003-06-23',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 3.5,

 'authors': (

 'Abramson, J.', 'Smirnova, I.', 'Kasho, V.',

 'Verner, G.', 'Kaback, H.R.', 'Iwata, S.'

)

}

PYTHON

The variable structure which is an instance of type dict, is now a nested dictionary:

We know that we can extract information from our nested dict just like we would with any other dict:

structures['LacY'] = {

 'pdb id': '2Y5Y',

 'deposit data': '2011-01-19',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 3.38,

 'note': 'in complex with an affinity inactivator',

 'authors': (

 'Chaptal, V.', 'Kwon, S.', 'Sawaya, M.R.',

 'Guan, L.', 'Kaback, H.R.', 'Abramson, J.'

)

}

PYTHON

print(structures)

PYTHON

{'Beta-Galactosidase': {'pdb id': '4V40', 'deposit date': '1994-07-18', 'organism': 'Escherichia coli',

OUTPUT

print(structures['Beta-Galactosidase'])

PYTHON

{'pdb id': '4V40', 'deposit date': '1994-07-18', 'organism': 'Escherichia coli', 'method': 'x-ray', 'res

OUTPUT

print(structures['Beta-Galactosidase']['method'])

PYTHON

x-ray

OUTPUT

print(structures['Beta-Galactosidase']['authors'])

PYTHON

Sometimes, especially when creating longer dictionaries, it might be easier to store individual entries in a variable beforehand and
add them to the parent dictionary later on.

Note that our parent dictionary in this case is represented by the variable structure.

We can then use the .update() method to update our structures dictionary:

We sometimes need to see what keys our dictionary contains. To obtain an array of keys, we use the method .keys() as follows:

('Jacobson, R.H.', 'Zhang, X.', 'Dubose, R.F.', 'Matthews, B.W.')

OUTPUT

print(structures['Beta-Galactosidase']['authors'][0])

PYTHON

Jacobson, R.H.

OUTPUT

entry = {

 'Lac Repressor': {

 'pdb id': '1LBI',

 'deposit data': '1996-02-17',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.7,

 'authors': (

 'Lewis, M.', 'Chang, G.', 'Horton, N.C.',

 'Kercher, M.A.', 'Pace, H.C.', 'Lu, P.'

)

 }

}

PYTHON

structures.update(entry)

print(structures['Lac Repressor'])

PYTHON

{'pdb id': '1LBI', 'deposit data': '1996-02-17', 'organism': 'Escherichia coli', 'method': 'x-ray', 'res

OUTPUT

print(structures.keys())

PYTHON

Likewise, we can also obtain an array of values in a dictionary using the .values() method:

We can then extract speci�c information to conduct an analysis. Note that the len() function in this context returns the number of
keys in the parent dictionary only.

Useful methods for dictionary
Now we use some snippets to demonstrate some of the useful methods associated with dict in Python.

Given a dictionary as:

dict_keys(['Beta-Galactosidase', 'Lactose Permease', 'LacY', 'Lac Repressor'])

OUTPUT

print(structures['LacY'].values())

PYTHON

dict_values(['2Y5Y', '2011-01-19', 'Escherichia coli', 'x-ray', 3.38, 'in complex with an affinity inact

OUTPUT

sum_resolutions = 0

res = 'resolution'

sum_resolutions += structures['Beta-Galactosidase'][res]

sum_resolutions += structures['Lactose Permease'][res]

sum_resolutions += structures['Lac Repressor'][res]

sum_resolutions += structures['LacY'][res]

total_entries = len(structures)

average_resolution = sum_resolutions / total_entries

print(average_resolution)

PYTHON

3.0199999999999996

OUTPUT

lac_repressor = {

 'pdb id': '1LBI',

 'deposit data': '1996-02-17',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.7,

}

PYTHON

We can create an array of all items in the dictionary using the .items() method:

Similar to the enumerate() function (discussed in subsection DIY), the .items() method also returns an array of tuple members. Each
tuple itself consists of 2 members, and is structured as (‘key’: ‘value’). On that account, we can use its output in the context of a for–loop
as follows:

Try .items() on a nested dict and see how it works.

print(lac_repressor.items())

PYTHON

dict_items([('pdb id', '1LBI'), ('deposit data', '1996-02-17'), ('organism', 'Escherichia coli'), ('method',

OUTPUT

for key, value in lac_repressor.items():

 print(key, value, sep=': ')

PYTHON

pdb id: 1LBI

deposit data: 1996-02-17

organism: Escherichia coli

method: x-ray

resolution: 2.7

OUTPUT

DO IT YOURSELF

Solution

We learned earlier that if we ask for a key that is not in the dict, a KeyError will be raised. If we anticipate this, we can handle it using the

.get() method. The method takes in the key and searches the dictionary to �nd it. If found, the associating value is returned. Otherwise,
the method returns None by default. We can also pass a second value to .get() to replace None in cases that the requested key does not
exist:

nested_dict = {

 'L1-a': {

 'L2-Ka': 'L2_Va',

 'L2-Kb': 'L2_Vb',

 },

 'L1-b': {

 'L2-Kc': 'L2_Vc',

 'L2-Kd': 'L3_Vd'

 },

 'L3-c': 'L3_V'

}

print(nested_dict.items())

PYTHON

dict_items([('L1-a', {'L2-Ka': 'L2_Va', 'L2-Kb': 'L2_Vb'}), ('L1-b', {'L2-Kc': 'L2_Vc', 'L2-Kd': 'L3_Vd'

OUTPUT

print(lac_repressor['gene'])

PYTHON

KeyError: 'gene'

OUTPUT

print(lac_repressor.get('gene'))

PYTHON

None

OUTPUT

print(lac_repressor.get('gene', 'Not found...'))

PYTHON

Implement the lac_repressor dictionary and try to extract the values associated with the following keys:

organism

authors

subunits

method

If a key does not exist in the dictionary, display No entry instead.

Display the results in the following format:

organism: XXX

authors: XXX

Solution

Not found...

OUTPUT

DO IT YOURSELF

lac_repressor = {

 'pdb id': '1LBI',

 'deposit data': '1996-02-17',

 'organism': 'Escherichia coli',

 'method': 'x-ray',

 'resolution': 2.7,

}

requested_keys = ['organism', 'authors', 'subunits', 'method']

for key in requested_keys:

 lac_repressor.get(key, 'No entry')

PYTHON

'Escherichia coli'

'No entry'

'No entry'

'x-ray'

OUTPUT

for-loop and dictionary
Dictionaries and for-loops create a powerful combination. We can leverage the accessibility of dictionary values through speci�c keys that
we de�ne ourselves in a loop to extract data iteratively and repeatedly.

One of the most useful tools that we can create using nothing more than a for-loop and a dictionary, in only a few lines of code, is a
sequence converter.

Here, we are essentially iterating through a sequence of DNA nucleotides (sequence), extracting one character per loop cycle from our
string (nucleotide). We then use that character as a key to retrieve its corresponding value from our a dictionary (dna2rna). Once we get the
value, we add it to the variable that we initialised using an empty string outside the scope of our for-loop (rna_sequence) as discussed in
subsection. At the end of the process, the variable rna_sequence will contain a converted version of our sequence.

sequence = 'CCCATCTTAAGACTTCACAAGACTTGTGAAATCAGACCACTGCTCAATGCGGAACGCCCG'

dna2rna = {"A": "U", "T": "A", "C": "G", "G": "C"}

rna_sequence = str() # Creating an empty string.

for nucleotide in sequence:

 rna_sequence += dna2rna[nucleotide]

print('DNA:', sequence)

print('RNA:', rna_sequence)

PYTHON

DNA: CCCATCTTAAGACTTCACAAGACTTGTGAAATCAGACCACTGCTCAATGCGGAACGCCCG

RNA: GGGUAGAAUUCUGAAGUGUUCUGAACACUUUAGUCUGGUGACGAGUUACGCCUUGCGGGC

OUTPUT

We know that in reverse transcription, RNA nucleotides are converted to their complementary DNA as shown:

Type Direction Nucleotides

RNA 5’…’ U A G C

cDNA 5’…’ A T C G

with that in mind:

1. Use the table to construct a dictionary for reverse transcription, and another dictionary for the conversion of cDNA to DNA.

2. Using the appropriate dictionary, convert the following mRNA (exon) sequence for human G protein-coupled receptor to its
cDNA.

DO IT YOURSELF

human_gpcr = (

 'AUGGAUGUGACUUCCCAAGCCCGGGGCGUGGGCCUGGAGAUGUACCCAGGCACCGCGCAGCCUGCGGCCCCCAACACCACCUC'

 'CCCCGAGCUCAACCUGUCCCACCCGCUCCUGGGCACCGCCCUGGCCAAUGGGACAGGUGAGCUCUCGGAGCACCAGCAGUACG'

 'UGAUCGGCCUGUUCCUCUCGUGCCUCUACACCAUCUUCCUCUUCCCCAUCGGCUUUGUGGGCAACAUCCUGAUCCUGGUGGUG'

 'AACAUCAGCUUCCGCGAGAAGAUGACCAUCCCCGACCUGUACUUCAUCAACCUGGCGGUGGCGGACCUCAUCCUGGUGGCCGA'

 'CUCCCUCAUUGAGGUGUUCAACCUGCACGAGCGGUACUACGACAUCGCCGUCCUGUGCACCUUCAUGUCGCUCUUCCUGCAGG'

 'UCAACAUGUACAGCAGCGUCUUCUUCCUCACCUGGAUGAGCUUCGACCGCUACAUCGCCCUGGCCAGGGCCAUGCGCUGCAGC'

 'CUGUUCCGCACCAAGCACCACGCCCGGCUGAGCUGUGGCCUCAUCUGGAUGGCAUCCGUGUCAGCCACGCUGGUGCCCUUCAC'

 'CGCCGUGCACCUGCAGCACACCGACGAGGCCUGCUUCUGUUUCGCGGAUGUCCGGGAGGUGCAGUGGCUCGAGGUCACGCUGG'

 'GCUUCAUCGUGCCCUUCGCCAUCAUCGGCCUGUGCUACUCCCUCAUUGUCCGGGUGCUGGUCAGGGCGCACCGGCACCGUGGG'

 'CUGCGGCCCCGGCGGCAGAAGGCGCUCCGCAUGAUCCUCGCGGUGGUGCUGGUCUUCUUCGUCUGCUGGCUGCCGGAGAACGU'

 'CUUCAUCAGCGUGCACCUCCUGCAGCGGACGCAGCCUGGGGCCGCUCCCUGCAAGCAGUCUUUCCGCCAUGCCCACCCCCUCA'

 'CGGGCCACAUUGUCAACCUCACCGCCUUCUCCAACAGCUGCCUAAACCCCCUCAUCUACAGCUUUCUCGGGGAGACCUUCAGG'

 'GACAAGCUGAGGCUGUACAUUGAGCAGAAAACAAAUUUGCCGGCCCUGAACCGCUUCUGUCACGCUGCCCUGAAGGCCGUCAU'

 'UCCAGACAGCACCGAGCAGUCGGAUGUGAGGUUCAGCAGUGCCGUG'

)

PYTHON

Solution

Q2

Summary
In this section we talked about dictionaries, which are one the most powerful built-in types in Python. We learned:

how to create dictionaries in Python,
methods to alter or manipulate normal and nested dictionaries,
two different techniques for changing an existing key,
examples on how dictionaries help us organise our data and retrieve them when needed,

Finally, we also learned that we can create an iterable (discussed in section) from dictionary keys or values using the .key() , the

.values() , or the .items() methods.

Exercises

mrna2cdna = {

 'U': 'A',

 'A': 'T',

 'G': 'C',

 'C': 'G'

}

cdna2dna = {

 'A': 'T',

 'T': 'A',

 'C': 'G',

 'G': 'C'

}

PYTHON

cdna = str()

for nucleotide in human_gpcr:

 cdna += mrna2cdna[nucleotide]

print(cdna)

PYTHON

TACCTACACTGAAGGGTTCGGGCCCCGCACCCGGACCTCTACATGGGTCCGTGGCGCGTCGGACGCCGGGGGTTGTGGTGGAGGGGGCTCGAGTTGGACAGGGT

OUTPUT

We know that the process of protein translation starts by transcribing a gene from DNA to RNA nucleotides, followed by
translating the RNA codons to protein.

Conventionally, we write a DNA sequence from the 5’-end to the 3’-end. The transcription process, however, starts from the 3’-end
of a gene to the 5’-end (anti-sense strand), resulting in a sense mRNA sequence complementing the sense DNA strand. This is
because RNA polymerase can only add nucleotides to the 3’-end of the growing mRNA chain, which eliminates the need for the
Okazaki fragments as seen in DNA replication.

Example: The DNA sequence ATGTCTAAA is transcribed into AUGUCUAAA.

Given a conversion table:

and this 5’- to 3’-end DNA sequence of 717 nucleotides for the Green Fluorescent Protein (GFP) mutant 3 extracted from Aequorea
victoria:

Use the DNA sequence and the conversion table to:

1. Write a Python script to transcribe this sequence to mRNA as it occurs in a biological organism. That is, determine the
complimentary DNA �rst, and use that to work out the mRNA.

2. Use the following dictionary in a Python script to obtain the translation (protein sequence) of the Green Fluorescent Protein
using the mRNA sequence you obtained.

END OF CHAPTER EXERCISES

dna_sequence = (

 'ATGTCTAAAGGTGAAGAATTATTCACTGGTGTTGTCCCAATTTTGGTTGAATTAGATGGTGATGTTAATGGT'

 'CACAAATTTTCTGTCTCCGGTGAAGGTGAAGGTGATGCTACTTACGGTAAATTGACCTTAAAATTTATTTGT'

 'ACTACTGGTAAATTGCCAGTTCCATGGCCAACCTTAGTCACTACTTTCGGTTATGGTGTTCAATGTTTTGCT'

 'AGATACCCAGATCATATGAAACAACATGACTTTTTCAAGTCTGCCATGCCAGAAGGTTATGTTCAAGAAAGA'

 'ACTATTTTTTTCAAAGATGACGGTAACTACAAGACCAGAGCTGAAGTCAAGTTTGAAGGTGATACCTTAGTT'

 'AATAGAATCGAATTAAAAGGTATTGATTTTAAAGAAGATGGTAACATTTTAGGTCACAAATTGGAATACAAC'

 'TATAACTCTCACAATGTTTACATCATGGCTGACAAACAAAAGAATGGTATCAAAGTTAACTTCAAAATTAGA'

 'CACAACATTGAAGATGGTTCTGTTCAATTAGCTGACCATTATCAACAAAATACTCCAATTGGTGATGGTCCA'

 'GTCTTGTTACCAGACAACCATTACTTATCCACTCAATCTGCCTTATCCAAAGATCCAAACGAAAAGAGAGAC'

 'CACATGGTCTTGTTAGAATTTGTTACTGCTGCTGGTATTACCCATGGTATGGATGAATTGTACAAATAA'

)

PYTHON

https://en.wikipedia.org/wiki/Okazaki_fragments
https://en.wikipedia.org/wiki/Green_fluorescent_protein
https://en.wikipedia.org/wiki/Aequorea_victoria
https://en.wikipedia.org/wiki/Aequorea_victoria

codon2aa = {

 "UUU": "F", "UUC": "F", "UUA": "L", "UUG": "L", "CUU": "L",

 "CUC": "L", "CUA": "L", "CUG": "L", "AUU": "I", "AUC": "I",

 "AUA": "I", "GUU": "V", "GUC": "V", "GUA": "V", "GUG": "V",

 "UCU": "S", "UCC": "S", "UCA": "S", "UCG": "S", "AGU": "S",

 "AGC": "S", "CCU": "P", "CCC": "P", "CCA": "P", "CCG": "P",

 "ACU": "T", "ACC": "T", "ACA": "T", "ACG": "T", "GCU": "A",

 "GCC": "A", "GCA": "A", "GCG": "A", "UAU": "Y", "UAC": "Y",

 "CAU": "H", "CAC": "H", "CAA": "Q", "CAG": "Q", "AAU": "N",

 "AAC": "N", "AAA": "K", "AAG": "K", "GAU": "D", "GAC": "D",

 "GAA": "E", "GAG": "E", "UGU": "C", "UGC": "C", "UGG": "W",

 "CGU": "R", "CGC": "R", "CGA": "R", "CGG": "R", "AGA": "R",

 "AGG": "R", "GGU": "G", "GGC": "G", "GGA": "G", "GGG": "G",

 "AUG": "<Met>", "UAA": "<STOP>", "UAG": "<STOP>", "UGA": "<STOP>"

}

PYTHON

Solution

Q1

dna_sequence = (

 'ATGTCTAAAGGTGAAGAATTATTCACTGGTGTTGTCCCAATTTTGGTTGAATTAGATGGTGATGTTAATGGT'

 'CACAAATTTTCTGTCTCCGGTGAAGGTGAAGGTGATGCTACTTACGGTAAATTGACCTTAAAATTTATTTGT'

 'ACTACTGGTAAATTGCCAGTTCCATGGCCAACCTTAGTCACTACTTTCGGTTATGGTGTTCAATGTTTTGCT'

 'AGATACCCAGATCATATGAAACAACATGACTTTTTCAAGTCTGCCATGCCAGAAGGTTATGTTCAAGAAAGA'

 'ACTATTTTTTTCAAAGATGACGGTAACTACAAGACCAGAGCTGAAGTCAAGTTTGAAGGTGATACCTTAGTT'

 'AATAGAATCGAATTAAAAGGTATTGATTTTAAAGAAGATGGTAACATTTTAGGTCACAAATTGGAATACAAC'

 'TATAACTCTCACAATGTTTACATCATGGCTGACAAACAAAAGAATGGTATCAAAGTTAACTTCAAAATTAGA'

 'CACAACATTGAAGATGGTTCTGTTCAATTAGCTGACCATTATCAACAAAATACTCCAATTGGTGATGGTCCA'

 'GTCTTGTTACCAGACAACCATTACTTATCCACTCAATCTGCCTTATCCAAAGATCCAAACGAAAAGAGAGAC'

 'CACATGGTCTTGTTAGAATTTGTTACTGCTGCTGGTATTACCCATGGTATGGATGAATTGTACAAATAA'

)

codon2aa = {

 "UUU": "F", "UUC": "F", "UUA": "L", "UUG": "L", "CUU": "L",

 "CUC": "L", "CUA": "L", "CUG": "L", "AUU": "I", "AUC": "I",

 "AUA": "I", "GUU": "V", "GUC": "V", "GUA": "V", "GUG": "V",

 "UCU": "S", "UCC": "S", "UCA": "S", "UCG": "S", "AGU": "S",

 "AGC": "S", "CCU": "P", "CCC": "P", "CCA": "P", "CCG": "P",

 "ACU": "T", "ACC": "T", "ACA": "T", "ACG": "T", "GCU": "A",

 "GCC": "A", "GCA": "A", "GCG": "A", "UAU": "Y", "UAC": "Y",

 "CAU": "H", "CAC": "H", "CAA": "Q", "CAG": "Q", "AAU": "N",

 "AAC": "N", "AAA": "K", "AAG": "K", "GAU": "D", "GAC": "D",

 "GAA": "E", "GAG": "E", "UGU": "C", "UGC": "C", "UGG": "W",

 "CGU": "R", "CGC": "R", "CGA": "R", "CGG": "R", "AGA": "R",

 "AGG": "R", "GGU": "G", "GGC": "G", "GGA": "G", "GGG": "G",

 "AUG": "<Met>", "UAA": "<STOP>", "UAG": "<STOP>", "UGA": "<STOP>"

}

dna2cdna = {

 'A': 'T',

 'C': 'G',

 'G': 'C',

 'T': 'A'

}

dna2mrna = {

 'A': 'U',

 'T': 'A',

 'G': 'C',

 'C': 'G'

}

Transcription

m_rna = str()

for nucleotide in dna_sequence:

 # DNA to cDNA

 c_dna = dna2cdna[nucleotide]

 # cDNA to mRNA

 m_rna += dna2mrna[c_dna]

PYTHON

print('mRNA:', m_rna)

mRNA: AUGUCUAAAGGUGAAGAAUUAUUCACUGGUGUUGUCCCAAUUUUGGUUGAAUUAGAUGGUGAUGUUAAUGGUCACAAAUUUUCUGUCUCCGGUGAAGG

OUTPUT

Translation:

mrna_len = len(m_rna)

codon_len = 3

protein = str()

for index in range(0, mrna_len, codon_len):

 codon = m_rna[index: index + codon_len]

 protein += codon2aa[codon]

print('Protein:', protein)

PYTHON

Protein: <Met>SKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGVQCFARYPDH<Met>KQHDFFKSA

OUTPUT

INTERMEDIATE-LEVEL TWIST (Alternative answer):

One can also combine the two processes.

#

Advantages:

- One for-loop.

- No use of `range()`.

- Almost twice as fast (half as many iterations).

m_rna = str()

protein = str()

codon = str()

for nucleotide in dna_sequence:

 # DNA to cDNA

 c_dna = dna2cdna[nucleotide]

 # Transcription:

 transcribed_nucleotide = dna2mrna[c_dna]

 m_rna += transcribed_nucleotide

 # Translation process:

 # Retaining the residue to construct triplets.

 codon += transcribed_nucleotide

 # Check if this is a triplet (a codon):

 if len(codon) == 3:

 # Convert to amino acid and store:

 protein += codon2aa[codon]

 # Reset the codon to an empty string:

 codon = str()

print('mRNA:', m_rna)

PYTHON

mRNA: AUGUCUAAAGGUGAAGAAUUAUUCACUGGUGUUGUCCCAAUUUUGGUUGAAUUAGAUGGUGAUGUUAAUGGUCACAAAUUUUCUGUCUCCGGUGAAGG

OUTPUT

print('Protein:', protein)

PYTHON

Protein: <Met>SKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGVQCFARYPDH<Met>KQHDFFKSA

OUTPUT

Dictionaries associate a set of values with a number of keys.

keys are used to access the values of a dictionary.

Dictionaries are mutable.

Nested dictionaries are constructed to organise data in a hierarchical fashion.

Some of the useful methods to work with dictionaries are: .items() , .get()

KEY POINTS

