
Functions
Last updated on 2024-05-23 | Edit this page 

Download Chapter PDF

Download Chapter notebook (ipynb)

OVERVIEW

Questions

What are functions?

How are functions created?

What are optional arguments?

What makes functions powerful?

Objectives

Develop concepts of using functions.

Understanding different ways of creating functions.

Explaining input arguments.

Understanding the inter-connectivity of functions.

Basic Python

https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/07-functions.Rmd
https://github.com/LearnToDiscover/Basic_Python/edit/main/episodes/07-functions.Rmd
http://127.0.0.1:6788/07-functions.pdf
http://127.0.0.1:6788/07-functions.ipynb


Function to create a dictionaryFunction to create a dictionary

Transcription FunctionTranscription Function

Covariance FunctionCovariance Function

https://www.youtube.com/watch?v=hcvGRK8FvQ8
https://www.youtube.com/watch?v=_Y6ucZYbVL4
https://www.youtube.com/watch?v=on_v5Ge80iE


This chapter assumes that you are familiar with the following concepts in Python 3:

Mathematical Operation

Indentation Rule

Conditional Statements

Arrays

Loops and Iterations

Functions

Defining Functions

In programming, functions are containers that incorporate some code and perform very speci�c
tasks. As we learned in the �rst chapter (on outputs), a function usually takes in one or several
variables or values, processes them, and produces a speci�c result. The variable(s) given to a
function and those produced by it are referred to as input arguments, and outputs respectively.

There are different ways to create functions in Python. In this course, we will be using def  to
implement our functions. This is the easiest and by far the most common method for declaring
functions. The structure of a typical function de�ned using def  is as follows:

PREREQUISITE

http://127.0.0.1:6788/02-input_output.html#math_ops
http://127.0.0.1:6788/03-conditional_statements.html#subsubsec:indentationRule
http://127.0.0.1:6788/03-conditional_statements.html
http://127.0.0.1:6788/04-arrays.html
http://127.0.0.1:6788/05-iterations.html
https://docs.python.org/3/tutorial/controlflow.html#defining-functions
http://127.0.0.1:6788/02-input_output.html#sub:ProducingAnOutput




There are several points to remember in relation to functions:

The name of a function follows same principles as that of any other variable as
discussed in variable names. The name must be in lower-case characters.

The input arguments of a function — e.g. value_a and value_b in the above example;
are essentially variables whose scope is the function. That is, they are only
accessible within the function itself, and not from anywhere else in the code.

Variables de�ned inside of a function, should never use the same name as variables
de�ned outside of it; or they may override each other.

A function declared using def  should always be terminated with a return
syntax. Any values or variables that follow return  are regarded as the function’s
output.

If we do not specify a return value, or fail to terminate a function using return
altogether, the Python interpreter will automatically terminate that function with an
implicit return None. Being an implicit process, this is generally regarded as a bad
practice and should be avoided.

We implement functions to prevent repetition in our code. It is therefore important for a function
to only perform a very speci�c task, so that it can be context-independent. You should therefore
avoid incorporating separable tasks inside a single function.

Functions are designed to perform speci�c tasks. That is why in the majority of cases,
they are named using verbs — e.g.  add()  or print() . We use verbs to describe an
action, a state, or an occurrence in everyday language. Likewise, this type of
nomenclature describes the action performed by a speci�c function. Name your functions
wisely!

REMEMBER

INTERESTING FACT

http://127.0.0.1:6788/02-input_output.html#subsec:variableNames


Once you start creating functions for different purposes; after a while, you will have a library of
ready-to-use functions to address different needs. This is the primary principle of a popular
programming paradigm known as functional programming.

So let us implement the example outline in the diagram:

Once implemented, we can go ahead use the function. We can do so in the same way as we do
with the built-in functions such as max()  or print() :

def add(value_a, value_b):

    """

    Calculates the sum of 2 numeric values

    given as inputs.

    :param value_a: First value.

    :type value_a: int, float

    :param value_b: Second value.

    :type value_b: int, float

    :return: Sum of the two values.

    :rtype: int, float

    """

    result = value_a + value_b

    return result

PYTHON

res = add(2, 5)

print(res)

PYTHON

7

OUTPUT

https://en.wikipedia.org/wiki/Functional_programming


When calling a function, we should always pass our positional input arguments in the
order they are de�ned in the function de�nition, from left to right.

This is because in the case of positional arguments, as the name suggests, the Python
interpreter relies on the position of each value to identify its variable name in the function
signature. The function signature for our add function is as follows:

add(value_a, value_b)

So in the above example where we say add(2, 5), the value 2 is identi�ed as the input
argument for value_a, and not value_b. This happens automatically because in our
function call, the value 2 is written in the �rst position, where value_a is de�ned in our
function declaration (signature).

Alternatively, we can use the name of each input argument to pass values onto them in any
order. When we use the name of the input argument explicitly, we pass the values as keyword
arguments. This is particularly useful in more complex functions where there are several input
arguments.

Let us now use keyword arguments to pass values to our add()  function:

REMEMBER

res = add(value_a=2, value_b=5)

print(res)

PYTHON

7

OUTPUT



Now even if we changed the order of our arguments, the function would still be able to associate
the values correctly:

res = add(value_b=2, value_a=5)

print(res)

PYTHON

7

OUTPUT



Choose the order of your input argument wisely. This is important when your function
accepts multiple input argument.

Suppose we want to de�ne a “division” function. It makes sense to assume that the �rst
number passed to the function will be divided by the second number:

It is also much less likely for someone to use keywords to pass arguments to this function
– that is, to say:

than it is for them to use positional arguments (without any keywords), that is:

But if we use an arbitrary order, then we risk running into problems:

In which case, our function would perform perfectly well if we use keyword arguments;
however, if we rely on positional arguments and common sense, then the result of the
division would be calculated incorrectly.

REMEMBER

def divide(a, b):

    return a / b

PYTHON

result = divide(a=2, b=4)

PYTHON

result = divide(2, 4)

PYTHON

def divide_bad(denominator, numerator):

    return numerator / denominator

PYTHON



Implement a function called �nd_tata that takes in one str argument called seq and
looks for the TATA-box motif inside that sequence. Then:

if found, the function should return the index for the TATA-box as output;

if not found, the function should explicitly return None.

Example:

The function should behave as follows:

sequence = 'GCAGTGTATAGTC'

res = find_tata(sequence)

result_a = divide_bad(numerator=2, denominator=4)

result_b = divide_bad(2, 4)

print(result_a == result_b)

PYTHON

False

OUTPUT

DO IT YOURSELF



Solution

Documentations
It is essential to write short, but proper documentation for our functions. There is no correct way
document a code. However, a general rule, a good documentation should tell us:

what a function does;

the names of the input arguments, and what type each argument should be;

the output, and its type.

The documentation string, also known as the docstring, is always written inside triple quotation
marks. The docstring must be the implemented on the very �rst line following the declaration of
the function to be recognised as the documentation:

def find_tata(seq):

    tata_box = 'TATA'

    result = seq.find(tata_box)

    return result

PYTHON



You might feel as though you would remember what your own functions do. That,
however, is scarcely the case. Functions that we implement tend to perform specialist,
and at times, very complex and interconnected processes. Whilst you might remember
what a speci�c function does for a few days after writing it, you would almost certainly
have trouble remembering the details in a matter of months. And that is not even
considering details regarding the type of the input argument(s) and those of the output.
In addition, programmers often share their works with other fellow programmers; be it
with their team, or in the context of a publication, or in public repositories as a
contribution to the community. Whatever the reason, there is one golden rule: a
functionality does not exist unless it is documented.

Writing the docstring on the �rst line is important because once a function is documented; we can
use help() , which is a built-in function, to access the documentations as follows:

def add(value_a, value_b):

    """

    Calculates the sum of 2 numeric values

    given as inputs.

    :param value_a: First value.

    :type value_a: int, float

    :param value_b: Second value.

    :type value_b: int, float

    :return: Sum of the two values.

    :rtype: int, float

    """

    result = value_a + value_b

    return result

PYTHON

REMEMBER



For very simple functions – e.g. the function add()  that we implemented above, where it is fairly
obvious what are the input and output arguments and their respective types; it is okay to
simplify the docstring to something explicit and concise, such as follows:

help(add)

PYTHON

Help on function add in module __main__:

add(value_a, value_b)

    Calculates the sum of 2 numeric values

    given as inputs.

    

    :param value_a: First value.

    :type value_a: int, float

    :param value_b: Second value.

    :type value_b: int, float

    :return: Sum of the two values.

    :rtype: int, float

OUTPUT

def add(value_a, value_b):

    """value_a + value_b -> number"""

    result = value_a + value_b

    return result

PYTHON

help(add)

PYTHON



Re-implement the function you de�ned in the previous Do it Yourself with appropriate
documentations.

Solution

Optional arguments
We already know that most functions take in one or more input arguments. Sometime a function
does not need all of the arguments to perform a speci�c task.

Help on function add in module __main__:

add(value_a, value_b)

    value_a + value_b -> number

OUTPUT

DO IT YOURSELF

def find_tata(seq):

    """

    Finds the location of the TATA-box,

    if one exists, in a polynucleotide

    sequence.

    :param seq: Polynucleotide sequence.

    :type seq: str

    :return: Start of the TATA-box.

    :rtype: int

    """

    tata_box = 'TATA'

    result = seq.find(tata_box)

    return result

PYTHON



An example we have already worked with is print() . We already know that this function may
be utilised to display text on the screen. However, we also know that if we use the file
argument, it will behave differently in that it will write the text inside a �le instead of displaying it
on the screen. Additionally, print()  has other arguments such as sep or end, which have
speci�c default values of ’ ’ (a single space) and \n (a linebreak) respectively.

Input arguments that are necessary to call a speci�c function are referred to as non-
default arguments. Those whose de�nition is not mandatory for a function to be called
are known as default or optional arguments.

Optional arguments may only be de�ned after non-default arguments (if any). If this
order is not respected, a SyntaxError will be raised.

The default value de�ned for optional arguments can in theory be an instance of any
type in Python. However, it is better and safer to only use immutable types as
demonstrated in Table for default values. The rationale behind this principle is beyond
the scope of this course, but you can read more about it in the of�cial documentations.

To de�ne functions with optional arguments, we need to assign to them a default value.
Remember that input arguments are variables with a speci�c scope. As a result, we can treat
our input argument as variables and assign them a value:

REMEMBER

ADVANCED TOPIC

http://127.0.0.1:6788/02-input_output.html#tb:types:nativeTypes
https://docs.python.org/3/tutorial/controlflow.html#default-argument-values


Now if we don’t explicitly de�ne upper when calling prepare_seq() , its value is automatically
considered to be False:

def prepare_seq(seq, name, upper=False):

    """

    Prepares a sequence to be displayed.

    :param seq: Sequence

    :type seq: str

    :param name: Name of the sequence.

    :type name: str

    :param upper: Convert sequence to uppercase characters (default: False)

    :type upper: bool

    :return: Formated string containing the sequence.

    :rtype: str

    """

    template = 'The sequence of {} is: {}'

    if not upper:

        response = template.format(name, seq)

    else:

        seq_upper = seq.upper()

        response = template.format(name, seq_upper)

    return response

PYTHON

sequence = 'TagCtGC'

prepped = prepare_seq(sequence, 'DNA')

print(prepped)

PYTHON

The sequence of DNA is: TagCtGC

OUTPUT



If we change the default value of False for upper and set to True, our sequence should be
converted to upper case characters:

Modify the function from previous Do it Yourself to accept an optional argument called
upper, with default value of False; thereafter:

if upper is False, then the function should perform as it already does (similar to
previous Do it Yourself);

if upper is True, then the function should convert the sequence onto uppercase
characters before it looks for the TATA-box.

Do not forget to update the docstring of your function.

prepped = prepare_seq(sequence, 'DNA', upper=True)

print(prepped)

PYTHON

The sequence of DNA is: TAGCTGC

OUTPUT

DO IT YOURSELF



Solution

It is not necessary to implement your functions in this way. It is, however, a very common
practice amongst programmers of any language. For that reason, you should be at least
familiar with the technique as you are bound to encounter it sooner rather later.

def find_tata(seq, upper=False):

    """

    Finds the location of the TATA-box,

    if one exists, in a polynucleotide

    sequence.

    :param seq: Polynucleotide sequence.

    :type seq: str

    :param upper: Whether or not to

     homogenise the sequence

     to upper-case characters.

    :type upper: bool

    :return: Start of the TATA-box.

    :rtype: int

    """

    tata_box = 'TATA'

    if not upper:

        result = seq.find(tata_box)

    else:

        seq_prepped = seq.upper()

        result = seq_prepped.find(tata_box)

    return result

PYTHON

REMEMBER



It is possible to have more than one return  in a function. This is useful when we need to account
for different outcomes; such as the one we saw in the previous example with prepare_seq() .

This means that we can simplify the process as follows:

Notice that we got rid of response. Here is a description of what happens:

In this context, if the conditional statement holds — i.e. when upper is False, we enter the

if  block. In that case, we reach the �rst return statement. At this point, the function
returns the corresponding results and terminates immediately.

On the other hand, if the condition does not hold — i.e. where upper is True, we skip the if
block altogether and proceed. It is only then that we arrive at the second return statement
where the alternative set of results are prepared.

This does not alter the functionality of our function in any way. However, in complex functions
that may be called repetitively (e.g. inside for  loop), this technique may improve the
performance of the function.

Now if we call our function, it will behave in exactly the same way as it did before:

def prepare_seq(seq, name, upper=False):

    """

    Prepares a sequence to be displayed.

    :param seq: Sequence

    :type seq: str

    :param name: Name of the sequence.

    :type name: str

    :param upper: Convert sequence to uppercase characters (default: False)

    :type upper: bool

    :return: Formated string containing the sequence.

    :rtype: str

    """

    template = 'The sequence of {} is: {}'

    if not upper:

        return template.format(name, seq)

    seq_upper = seq.upper()

    return template.format(name, seq_upper)

PYTHON



Interconnectivity of functions
Functions can call other functions. This is what makes them extremely powerful tools that may be
utilised to address an unlimited number of problems.

This allows us to devise a network of functions that call each other to perform different tasks at
different times, and collectively contribute to the production of one �nal answer.

sequence = 'TagCtGC'

prepped = prepare_seq(sequence, 'DNA')

print(prepped)

PYTHON

The sequence of DNA is: TagCtGC

OUTPUT

prepped = prepare_seq(sequence, 'DNA', upper=True)

print(prepped)

PYTHON

The sequence of DNA is: TAGCTGC

OUTPUT



Functions must have specialist functionalities. They should, as much as possible, be
implemented to perform one task, and one task only.

So if you need to get more things done, do not write more code in one function. This
would defy the purpose of functional programming. Instead, consider writing more
functions that contain less code and perform more specialist functionalities.

REMEMBER



Now that we have function to calculate the mean, we can go ahead and write a function
to calculate the variance, which itself relies on mean:

EXAMPLE:  A MINI TOOLBOX FOR STATISTICS

def mean(arr):

    """

    Calculates the mean of an array.

    :param arr: Array of numbers.

    :type arr: list, tuple, set

    :return: Mean of the values in the array.

    :rtype: float

    """

    summation = sum(arr)

    length = len(arr)

    result = summation / length

    return result

PYTHON



Now we have two functions, which we can use to calculate the variance or the mean for
any array of numbers.

Remember that testing a function a crucial part of its design. So let us go ahead and test
our functions:

def variance(arr):

    """

    Calculates the variance of an array.

    :param arr: Array of numbers.

    :type arr: list, tuple, set

    :return: Variance of the values in the array.

    :rtype: float

    """

    arr_mean = mean(arr)

    denominator = len(arr)

    numerator = 0

    for num in arr:

        numerator += (num - arr_mean) ** 2

    result = numerator / denominator

    return result

PYTHON

numbers = [1, 5, 0, 14.2, -23.344, 945.23, 3.5e-2]

PYTHON

numbers_mean = mean(numbers)

print(numbers_mean)

PYTHON



Now that we have a function to calculate the variance, we could easily go on to calculate
the standard deviation, too.

The standard deviation is calculated from the square root of variance. We can easily
implement this in a new function as follows:

134.58871428571427

OUTPUT

numbers_variance = variance(numbers)

print(numbers_variance)

PYTHON

109633.35462420408

OUTPUT

def stan_dev(arr):

    """

    Calculates the standard deviation of an array.

    :param arr: Array of numbers.

    :type arr: list, tuple, set

    :return: Standard deviation of the values in the array.

    :rtype: float

    """

    from math import sqrt

    var = variance(arr)

    result = sqrt(var)

    return result

PYTHON



Now let’s see how it works in practice:

Write a function that given an array of any values, produces a dictionary containing the
value of that array as keys, and the count of the values in the original array (their
frequencies) as values.

Example:

For the following array:

the function should return the above dictionary:

Suggestion: You can add this as a new tool to the statistics mini toolbox.

numbers_std = stan_dev(numbers)

print(numbers_std)

PYTHON

331.1092789762982

OUTPUT

DO IT YOURSELF

values = [1, 1.3, 1, 1, 5, 5, 1.3, 'text', 'text', 'something']

PYTHON



Solution

Exercises

def count_values(arr):

    """

    Converts an array into a dictionary of

    the unique members (as keys) and their

    counts (as values).

    :param arr: Array containing repeated

                members.

    :type arr: list, tuple

    :return: Dictionary of unique members

         with counts.

    :rtype: dict

    """

    unique = set(arr)

    arr_list = list(arr)

    result = dict()

    for num in unique:

        result[num] = arr_list.count(num)

    return result

PYTHON



Write a function with the following features:

Call the function get_basic_stats()  and let it take one input argument which,
however, may contain any number of input arrays, e.g. a tuple of arrays.

Using a for loop, for each of the arrays calculate the mean and the variance using
the functions ‘mean’ and ‘variance’ given above, i.e. call those functions from within
the function get_basic_stats() .

Calculate the standard deviation for each array as the square root of the variance.
You will have to import the function sqrt from module math.

Return a single array containing (in that order) the mean, the variance, and the
standard deviation for each array.

To test the function, combine three arrays in a tuple as follows:

Call the function get_basic_stats()  with this tuple as argument and write the output
to a variable. Display the results in the following form:

STD of array' index, ':' STD

The result for the above arrays should be:

END OF CHAPTER EXERCISES

my_arrays = (

    [1, 2, 3, 4, 5],

    [7, 7, 7, 7],

    [1.0, 0.9, 1.2, 1.12, 0.95, 0.76],

)

PYTHON



STD of array 0 :  1.4142135623730951

STD of array 1 :  0.0

STD of array 2 :  0.14357537702854514



Solution



def mean(arr):

    """

    Calculates the mean of an array.

    :param arr: Array of numbers.

    :type arr: list, tuple, set

    :return: Mean of the values in the array. :rtype: float

    """

    summation = sum(arr)

    length = len(arr)

    result = summation / length

    return result

def variance(arr):

    """

    Calculates the variance of an array.

    :param arr: Array of numbers.

    :type arr: list, tuple, set

    :return: Variance of the values in the array.

    :rtype: float

    """

    arr_mean = mean(arr)

    denominator = len(arr)

    numerator = 0

    for num in arr:

        numerator += (num - arr_mean) ** 2

        result = numerator / denominator

    return result

PYTHON



def get_basic_stats(arrays):

    """

    Calculates the mean, variance and standard deviation for

    a set of arrays.

    :param arrays: An array contain any number of arrays of numbers.

    :type arrays: list, tuple

    :return: A list of arrays containing the mean, variance and

    standard deviation for each item in arrays

    :rtype: list

    """

    from math import sqrt

    results = list()

    for array in arrays:

        arr_mean = mean(array)

        arr_var  = variance(array)

        arr_std  = sqrt(arr_var)

        results.append((arr_mean, arr_var, arr_std))

    return results

my_arrays = ([1, 2, 3, 4, 5],

    [7, 7, 7, 7],

    [1.0, 0.9, 1.2, 1.12, 0.95, 0.76],

)

my_results = get_basic_stats(my_arrays)

for index, result in enumerate(my_results):

    print('STD of array', index, ': ', result[2])



Functions make repetitive tasks ef�cient.

Keyword def  is used to create a function.

Optional arguments does not require prior de�nition.

Inter-connectivity of functions make them very powerful.

STD of array 0 :  1.4142135623730951

STD of array 1 :  0.0

STD of array 2 :  0.14357537702854514

OUTPUT

KEY POINTS


